Diophantine Equations with Linear Recurrences an Overview of Some Recent Progress
نویسنده
چکیده
We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called ”quotient problem” (resp. ”d-th root problem”), which in short asks whether the integrality of the values of the quotient (resp. d-th root) of two (resp. one) linear recurrences implies that this quotient (resp. d-th root) is itself a recurrence. We shall also relate such questions with certain natural diophantine equations, which in turn come from the simplest unknown cases of Vojta’s conjecture for integral points on algebraic varieties. Umberto Zannier Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, ITALY E-mail : [email protected]
منابع مشابه
Diophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملSolving Linear Diophantine Equations
An overview of a family of methods for nding the minimal solutions to a single linear Diophantine equation over the natural numbers is given. Most of the formal details were dropped, some illustrations that might give some intuition on the methods being presented instead.
متن کاملFast Methods for Solving Linear Diophantine Equations
We present some recent results from our research on methods for finding the minimal solutions to linear Diophantine equations over the naturals. We give an overview of a family of methods we developed and describe two of them, called Slopes algorithm and Rectangles algorithm. From empirical evidence obtained by directly comparing our methods with others, and which is partly presented here, we a...
متن کاملDiophantine Problems with Linear Recurrences via the Subspace Theorem
In this paper we give an overview over recent developments (initiated by P. Corvaja and U. Zannier in [3]) on Diophantine problems where linear recurring sequences are involved and which were solved by using W.M. Schmidt’s Subspace Theorem. Moreover, as a new application, we show: let (Gn) and (Hn) be linear recurring sequences of integers defined by Gn = c1α n 1 + c2α n 2 + · · ·+ ctα t and Hn...
متن کاملA Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005